
GPU accelerated time domain DGA method for wave propagation
problems on tetrahedral grids

Matteo Cicuttin1, Lorenzo Codecasa2, Bernard Kapidani3, Ruben Specogna3, Francesco Trevisan3

1Université Paris-Est, Cermics (ENPC), F-77455 Marne-la-Vallée, France
2Politecnico di Milano, Dip. di Elettronica, Informazione e Bioingegneria, I-20133, Milano, Italy

3Polytechnic Department of Engineering and Architecture (DPIA), Università di Udine, I-33100 Udine, Italy
kapidani.bernard@spes.uniud.it

The classical Finite Difference Time Domain method due to Yee is known to be massively parallelizable and efficently deployable
on Graphical Processing Units (GPUs). Classical FDTD however requires a Cartesian discretization of the computational domain,
which limits the abilities to model arbitrary geometries. The recently introduced explicit, consistent and conditionally stable DGATD
method, which employs tetrahedral grids, enables full modeling flexibility while maintaining great computational efficiency. In this
paper we present an evaluation of the DGATD method implemented on GPUs using NVidia CUDA libraries.

Index Terms—Time Domain methods, wave propagation, Parallel computing, Tetrahedral meshes

I. INTRODUCTION

THE classical Finite Difference Time Domain (FDTD)
method, devised by Yee [1] on two interlocked Cartesian

orthogonal grids, has been extensively studied and used for its
simplicity and computational efficiency. This method is used
to numerically solve Maxwell’s equations in a bounded region
Ω ⊂ R3. We recall that the equations for the continuous case
are

(1a)
∂d

∂t
= ∇× h,

(1b)e = ε−1d,

(1c)
∂b

∂t
= −∇× e,

(1d)h = µ−1b.

The generic FDTD algorithm has been reinterpreted in the
FIT framework [2], which is also based on a discretization
employing two interlocked grids, a primal grid G and a dual
grid G̃ obtained by barycentric subdivision of G. This yields
the discrete system of equations

(2a)
Ψ̃n − Ψ̃n−1

∆t
= C̃F̃n−

1
2 ,

(2b)Un = Mε−1Ψ̃n,

(2c)
Φn+ 1

2 −Φn− 1
2

∆t
= −CUn,

(2d)F̃n+
1
2 = Mµ−1Φn+ 1

2 ,

in which Ψ̃n, Ψ̃n−1 are the vectors of the fluxes of the electric
displacement across the faces of G̃ at time instant n∆t and
(n − 1)∆t respectively, Un is the vector of the line integrals
of the electric field along the edges of G at time instant n∆t;
Φn+ 1

2 , Φn− 1
2 are the vectors of the fluxes of the magnetic

induction across the faces of at time instants (n + 1
2 )∆t

and (n − 1
2 )∆t and F̃n+

1
2 is the vector of the line integrals

of the magnetic field along the edges of G̃ at time instant
(n + 1

2 )∆t. Matrices C and C̃ are the face-edge incidence

matrices of G and G̃, respectively. Equations (2a) and (2c) are
discrete equivalents of Ampère–Maxwell’s law and Faraday’s
law respectively, and are exact equations. Equations (2b) and
(2d) are discrete counterparts of the electric and magnetic
constitutive relations and are instead approximate equations:
the usual approach for approximating the material parameters
ε and µ on a discrete domain is to assume their value to be
uniform on each volume of the primal grid G. The choice on
how to construct these global discrete approximate relations
affects the stability and consistency features of the algorithm.
In [4], a method for constructing matrices Mµ−1 and Mε−1

based on the Discrete Geometric Approach (DGA) has been
introduced, yielding an explicit, consistent and conditionally
stable algorithm over tetrahedral meshes. We will refer to
this new approach as DGA in time-domain (DGATD). In this
approach Mµ−1 is constructed locally on each tetrahedron in
the mesh and Mε−1 is constructed by locally inverting Mε on
each dual volume of the mesh. The accuracy and performance
of the resulting numerical scheme have been studied on CPUs
in [5], where a comparison with alternative implicit methods is
also given. Differently from implicit schemes, where the most
part of the computational burden is on the solution of a linear
system for each time step of the simulation, in the explicit
DGATD method the leapfrog scheme of the generic time step
computation is

(3a)Un = Un−1 + ∆tMε−1C̃F̃n−
1
2 ,

(3b)F̃n+
1
2 = F̃n−

1
2 −∆tMµ−1CUn,

in which the performance is bound by how efficiently we can
perform matrix-vector products. As with the original Cartesian
orthogonal scheme [6], we can show that the algorithm is
amenable to massive parallelization: since each unknown in
column vector Un, computed in (3a), depends only on the
quantities computed in (3b) at time step (n − 1

2 )∆t in the
two dual volumes that intersect the primal edge to which the
unkown corresponds (see Fig. 1), we can compute the contribu-
tions of each dual volume to Un concurrently. Similarly, each



Fig. 1. Local quantities defined on the single dual cell and relation to
neighboring cells. For the sake of clarity we show a 2D version.

Fig. 2. Local quantities defined on the single primal cell and relation to
neighboring cells. For the sake of clarity we show a 2D version.

unknown in column vector Fn+
1
2 , computed in (3b), depends

only on the quantities computed in (3a) at time step n∆t in the
two primal volumes that intersect the dual edge to which the
unkown corresponds (see Fig. 2), and again we can compute
the contributions of each primal volume to Fn+

1
2 concurrently.

II. PRELIMINARY NUMERICAL RESULTS

The DGATD method was implemented inside our own C++
electromagnetic framework (EMT) using the NVidia cuSparse
library, which allows to perform sparse matrix-vector product
(SpMv) on GPU without having to write our own CUDA
kernels. We used a TESLA C2075 accelerator for all tests.
The accelerator features the double-precision Fermi microar-
chitecture and compute capability 2.0; the underlying processor
supports 448 threads and the available memory is 6 GB. For all
meshes, we set ∆t = 1ps to ensure stability on the finest mesh
used. To add comparisons to a Cartesian orthogonal FDTD
scheme, we used the free FDTD package MEEP [7]. It is
worth noting that, as with Finite Elements, the DGATD method
requires a smaller time step with respect to the Cartesian
orthogonal FDTD scheme.

The accuracy and performance of the various competing
methods is assessed on a problem for which a very accurate
solution is available on Cartesian grids. We simulated a rect-
angular waveguide of size 5×2.5 cm and length 10 cm in the
z direction. At z = 0, a TE10 electric field is applied while at
the other end (z = 10 cm) a Perfect Electric Conductor (PEC)
termination is applied.

1e-04

1e-03

1e-02

1e-01

1e+00

1e+05 1e+06 1e+07

DGATD
FDTD MEEP
DGATD GPU

Fig. 3. Average computational time (seconds) of a single time step vs. the
number of DOFs of the problem. Axes are in logarithmic scale.

In Fig. 3 we show the single time step average computational
time (since the focus is on showing the improvement due to
parallelization) versus the number of unknowns of the problem
for DGATD on CPU, FDTD on CPU and DGATD on GPU.
In average, this initial GPU version of the DGATD method
is 10 times faster than the CPU version. Since the accelerator
could provide far better performance in single precision, we
are investigating this possibility and we will present the results
about accuracy and computational efficiency in the full paper.

The non GPU-accelerated implementation of DGATD is the
same we already used in [5], compiled with option -O3 on
a machine with a Xeon E5-2687Wv4 processor. Algebraic
operations are performed with the latest release (3.3.1) of the
open-source Eigen linear algebra library.

III. CONCLUSIONS

Despite the GPU implementation of DGATD being pre-
liminary and not yet fully optimized, we observe important
speedups with respect to the CPU implementation. This sug-
gests that the explicit nature of DGATD combined with the
processing power of modern GPU accelerators can open the
way for new and effective tools in computational electromag-
netism.

REFERENCES

[1] K.S. Yee, Numerical solution of initial boundary value problems involving
Maxwells equations in isotropic media, IEEE Transactions on Antennas
and Propagation, vol. AP-14, no. 3, pp. 302307, May 1966.

[2] T. Weiland, Time domain electromagnetic field computation with finite
difference methods, International Journal of Numerical Modeling, vol. 9,
pp. 295319, 1996.

[3] A. Taflove and S. Hagness, Computational Electromagnetics, The Finite
Difference Time Domain Method, Second Edition. Boston, MA: Artech
House, 2000.

[4] L. Codecasa, M. Politi, Explicit, Consistent and Conditionally Stable
Extension of FD-TD by FIT, IEEE Transactions on Magnetics, Vol. 44,
pp. 1258-1261, 2008.

[5] B. Kapidani, L. Codecasa, M. Cicuttin, R. Specogna, F. Trevisan, A
comparative performance analysis of time-domain formulations for wave
propagation problems, under review at IEEE Transactions on Magnetics.

[6] P. Sypek, A. Dziekonski, and M. Mrozowski, How to Render FDTD
Computations More Effective Using a Graphics Accelerator, IEEE
Transactions on Magnetics, vol. 45, no. 3, pp. 1324-1327, 2009.

[7] A.F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J.D. Joannopoulos,
S.G. Johnson, MEEP: A flexible free-software package for electromag-
netic simulations by the FDTD method, Computer Physics Communica-
tions, Vol.181, pp. 687702, 2010.


	Introduction
	Preliminary Numerical results
	Conclusions
	References

